Follow 1000Bulbs.com on YouTube

Oct 26, 12 Follow 1000Bulbs.com on YouTube

With nearly 100,000 views, you’ve made the 1000Bulbs.com YouTube channel one of the most popular lighting resources on the web! If you haven’t checked it out recently, here’s what you’re missing:

Product Information Videos

If you’re a fan of 1000Bulbs.com, you’ve noticed we always include any information our manufacturers provide about their product. From instructional guides to specification sheets and brochures, whatever you need is right there on the product page. The same goes for videos like this one from Plumen, which we make sure to include on both our website and our YouTube channel.

Product Tutorials

Have you found a cool product on our site but aren’t sure how to use it? Videos like the one on the Magic Box Christmas Light Tester show you how to use every feature of our product before you buy it!

DIY Videos

In previous articles explaining how to build an antique pendant lamp and last week’s how to build a lighted Halloween ghost, you may have also noticed our videos. There are more where those came from, so make sure to subscribe to our channel and check out our DIY projects page.

Customer Videos

One of the most popular videos on our channel was submitted by a customer. Robert Darwin’s video on how to make a Deadmau5 head using our acrylic globes now has nearly 8,000 views. We’d love to see your videos too, so if you have a video of something you’ve created with our products, let us know!

Be sure to follow us on Facebook, Twitter, Google Plus, and Pinterest for even more video updates.

 

read more

Mercury in CFL Bulbs: Is It Dangerous?

Aug 31, 12 Mercury in CFL Bulbs: Is It Dangerous?

Lighting topics don’t get much more exciting than the debate over the mercury content of compact fluorescents (CFLs). Those against the use of CFLs claim that the potential harm of toxic mercury contained within the energy-saving bulbs far outweighs any environmental benefits. On the other side, groups feel such rhetoric is overblown. But what are the facts?

 

Why Use Mercury in CFLs?

Mercury (Hg) is a naturally occurring element used in applications as varied as thermometers, dental fillings, and fluorescent lighting. The cathodes within a fluorescent tube produce electric current that passes through argon gas and mercury vapor. In turn, the mercury vapor emits ultraviolet light that excites the phosphor coating within the fluorescent tube, producing visible light [1]. The technology is the same for both linear fluorescent tubes (like those seen in office buildings) and self-ballasted compact fluorescents (the “spiral” bulbs used in homes). In short, without mercury, fluorescent lights will not work.

 

How Much Mercury is in a CFL?

The amount of mercury contained within a CFL varies, and in general, has decreased since their introduction nearly two decades ago. As of November 2010, the US EPA’s Energy Star program concluded that the average amount of mercury within a screw-in CFL was 4 milligrams, comparable to the size of a ballpoint pen tip [2]. This pales in comparison to older thermometers, which contain as much as 500 mg [3] and even amalgam dental fillings, which contain about 100 mg of mercury [4].

Mercury Content

Mercury Content in Popular Items

Keep in mind, however, that the mercury contained in a CFL, thermometer, or dental filling can be present in these sources in two forms: A liquid, which is what we typically think of when we think of mercury, and a vapor that quickly dissipates. In the case of a broken CFL, the most likely form of exposure comes from inhaled mercury vapor. A paper in the August 2009 issue of the lighting journal LD+A found that the median amount of mercury vapor to which a person is exposed through a broken CFL is a tiny fraction of the total mercury contained within the bulb: Approximately 0.07 micrograms (0.0007 mg). On the other hand, a tuna fish sandwich, which contains the more hazardous methylmercury, is estimated to expose the consumer to more than 48 times that amount due to the more efficient method of consumption (literally eating the mercury) [5].

 

Who Regulates Mercury in CFLs?

Despite its relatively low concentration in CFLs, mercury is still a toxic substance. For this reason, the EPA requires that CFLs contain no more than 5 mg of mercury for consideration in their Energy Star program. The European Union and the State of California adopted even tougher regulations, requiring CFLs to contain no more than 2.5 mg of mercury by 2013 [6]. Manufacturers, however, have made the biggest strides. A 60-watt equal, warm white Neolite CFL by Litetronics, for example, uses only 1 mg of mercury, 80% less than Energy Star requirements [7]. Along with other major manufacturers, Sylvania voluntarily capped CFL mercury content at 4 mg, with the 13-watt DULUX EL 29409 containing only 1.5 mg [8].

 

The Answer?

So the question remains: Is the mercury in CFLs dangerous? It’s not an easy question to answer. Mercury is a toxic substance, yet it is unlikely that fluorescent lighting would ever expose a person to an amount of the neurotoxin sufficient to cause physiological harm. Want proof of that? Despite putting themselves in a worst-case scenario fluorescent lighting mishap, to the best of our knowledge, these two guys are still alive and well:

 

References:

1. Van Dussen, Matthew. ‘The Mercury Myth: How Much Mercury Do CFLs Actually Contain?’ TXNOLOGIST. Retrieved 2012-08-30.

2. ‘Frequently Asked Questions: Information on Compact Fluorescent Light Bulbs (CFLs) and Mercury’. Energy Star. Retrieved 2012-08-30.

3. ‘Indoor Liquid Mercury Spills: Frequently Asked Questions’. State of Michigan. Retrieved 2012-08-30.

4. ‘IMERC Fact Sheet: Mercury Use in Dental Amalgam’. NEWMOA. Retrieved 2012-08-30.

5. Clear, Robert et al. ‘Dangerous Mercury in CFLs? One Big Fish Story’. LD+A. Retrieved 2012-08-30.

6. (2)

7. Litetronics Neolite Sell Sheet. 1000Bulbs.com. Retrieved 2012-08-30.

8. ‘Mercury Quantity in Lamps for General Lighting Applications’. Sylvania. Retrieved 2012-08-30.

read more

Form and Function Meet in the Plumen CFL

Jul 27, 12 Form and Function Meet in the Plumen CFL

Many people in lighting and design circles are already familiar with the Plumen CFL. If you’re not, Plumen’s tagline sums it up pretty well: “The world’s first designer energy saving light bulb.”

To many, the typical spiral shape of a compact fluorescent is an eyesore, so they hide it under a lampshade or within an enclosed light fixture. That’s unfortunate, because there’s no reason a CFL has to be so ugly. In fact, the bulb’s glass tube can take virtually any form. There are plenty of fixtures, from pendants to desk lamps, which challenge the status quo. Why shouldn’t a bulb do the same?

Plumen Box

Plumen Packaging

The creators of the Plumen—designer Samuel Wilkinson and British design company Hulger—took that challenge. Their revolutionary bulb takes its inspiration from bird feathers (the “plume” in Plumen). Instead of twisting the glass tubes of the bulb into a utilitarian and industrial shape, the designers gave them an airy, organic form.  The unique design has already landed Plumen in the permanent collection of the Museum of Modern Art (MOMA) and earned it the Brit Insurance Design of the Year Award.

Popular applications for the Plumen include pendant lights, floor lamps, and anywhere you might use an antique light bulb. Indeed, many stylish, yet energy conscious customers find the Plumen satisfies their desire for much less efficient incandescent antique bulbs. The Plumen uses only 11 watts to produce the equivalent light output of a 60 watt incandescent light bulb. This means the bulb saves 80% on your energy bills. In addition, the 8,000 hour bulb will outlast 8 to 10 incandescent bulbs. Lower bills, fewer carbon emissions, long life, and beautiful design: What more could you ask for in a light bulb?

Head over to our website to check out the Plumen, and let us know what you think. Drop us a line in the comments below or join the conversation on Facebook, Twitter, or Google+!

read more

CFL Warm-Up Times: 4 Bulbs Put to the Test

Jul 13, 12 CFL Warm-Up Times: 4 Bulbs Put to the Test

You know the feeling. You just came home from the hardware store with a blister pack of brand new, energy-saving CFLs. You screw them in and hit the switch. “Oh, this is gonna be good,” you say to yourself. You’re going to save tons of money and your bulbs are gonna look great! Then you notice they’re dim, really dim. Defeated, you retreat to another room to find your receipt. But then, when you return a minute or so later, they’re as bright as you expected them to be! What sorcery is this?

Everyone has had this experience with their first batch of CFLs, though maybe it wasn’t as melodramatic. To understand why compact fluorescents start off dim, you have to know a bit about how fluorescent lighting works. Unlike an incandescent bulb, which creates light by heating a filament until it is white-hot, fluorescent lights use cathodes to heat a special gas or mix of gases to create UV light. The UV light is then filtered through phosphors to create white or colored light. To do this however, the cathodes have to warm up.

The Setup

Every new CFL on the market uses different proprietary technology to shorten the bulb’s warm-up time, with varied results, so we chose to test four of our best-selling 60 watt CFLs. Though this is far from a scientific study, here’s how we conducted the experiment: We screwed each bulb into a lamp, and set a light meter about one foot to the side the lamp. We propped up the light meter so it was roughly on the same horizontal plane as the CFL’s midpoint. We then turned on each bulb and used the light meter to record the maximum light output of the bulb. Finally, we replaced the bulbs with identical bulbs of the same make and model (using the already warm bulb would have skewed our results). We then switched the bulbs on and recorded the time it took to meet the previously recorded maximum output.

Bulb One: Energy Miser

The first bulb we tested is a 13 watt, 2700K CFL from Energy Miser. Just over $1.00 each, this bulb is not only the most inexpensive of the bulbs we tested, but it’s also our best seller. The manufacturer doesn’t make any claims about the bulb’s warm up time, though our customers have given it an average 5-star rating. In our tests, the bulb reached its maximum output in 2 minutes, 2 seconds. That’s not exactly quick, but according to most manufacturers, it’s about on par for a typical CFL.

Bulb Two: TCP TruStart

The second bulb we tested, a TCP TruStart, is a fairly new addition to our product line. In their spec sheet, TCP claims this bulb is the “Best on/off CFL ever made!” Unlike the previous bulb we tested, TCP does make a claim about this bulb’s warm-up time; specifically, TCP says the CFL has a less than 30 second warm-up time. Our tests showed this claim to be mostly true, with the bulb reaching its full brightness at 38.7 seconds.

Bulb Three: Sylvania DULUX EL

The third bulb we tested is from the “big three” of lighting manufacturers, Sylvania. Sylvania also doesn’t make any specific claims about warm-up times for this 13 watt CFL from their DULUX EL family, nor do our customers (who give it an average 4-star rating). So how did this name brand product fare? Pretty well, it turns out. The bulb reached its full brightness at 1 minute, 7 seconds. That not as good as the TCP TruStart, but it’s nearly twice as fast as the Energy Miser.

Bulb Four: TCP InstaBright

The final bulb we tested is a little different from the other four we tested. This covered CFL from TCP has a glass cap over the fluorescent spiral tube so that it looks more like a typical A-shape incandescent bulb. In their InstaBright G2 brochure, TCP claims the bulb has the “Fastest run-up time and significantly improved light build up time,” and it is supposed to reach full brightness in 45 seconds. Surprisingly, this bulb beat even its own estimates, reaching full brightness in only 35.1 seconds!

Which of these bulbs should you buy? It depends how much you’re willing to pay and how much you value fast warm-up times. There is a spread of more than $4.00 between the cheapest and most expensive of these bulbs. Is a few seconds quicker to reach full brightness worth the premium? Let us know what you think in the comments, or connect with us on Facebook, Google+, and Twitter.

read more

New Product Spotlight: TCP LED BR Reflector Bulbs

Jun 15, 12 New Product Spotlight: TCP LED BR Reflector Bulbs

If you’ve read this blog before, you know one of the shortcomings of LED lighting is that LEDs, by nature, project light forward. Manufacturers have posed all kinds of creative solutions to this problem, from frosted caps to space station looking spires of LEDs within the bulb envelope. However, one of our favorite brands here at 1000Bulbs.com claims to have solved this problem, at least for reflector bulbs, with a surprisingly simple solution.

read more